Sentiment Analysis on Starbucks Reviews: Implementation of K-Nearest Neighbors and Support Vector Machine
DOI:
https://doi.org/10.61179/infact.v9i02.761Keywords:
Sentiment Analysis, K-Nearest Neighbors, Starbucks ReviewsAbstract
This study conducts sentiment analysis on Starbucks customer reviews from the ConsumerAffairs website using the K-Nearest Neighbors (KNN) classification algorithm. The objective is to evaluate customer satisfaction and perceptions of service. Reviews are preprocessed with standard NLP techniques and labeled using TextBlob based on sentiment polarity: positive, neutral, or negative. The KNN algorithm is tested with different training and testing ratios: 60%:40%, 70%:30%, and 80%:20%. The best accuracy, 85%, is achieved with a 60%:40% split, indicating that a balanced dataset improves performance and reduces overfitting. Results show that most reviews reflect positive sentiment, with words like ‘awesome’, ‘sweet’, and ‘variety’. Nonetheless, some reviews mention negative experiences, especially health-related issues and in-store equipment problems. The KNN method proves effective for sentiment classification and provides meaningful insights that Starbucks can utilize to enhance product quality, service efficiency, and overall customer satisfaction.
References
R. A. Shahirah, “PENGARUH REVIEW PELANGGAN TERHADAP KEPUTUSAN PEMBELIAN DI ONLINE SHOP,” MARAS: Jurnal Penelitian Multidisiplin, vol. 1, no. 3, pp. 626–630, Dec. 2023, doi: 10.60126/maras.v1i3.119.
N. Hossain, M. R. Bhuiyan, S. A. Hossain, and Z. N. Tumpa, “Sentiment Analysis of Restaurant Reviews using Combined CNN-LSTM,” 2020.
M. A. Palimbani, R. P. Hasuti, and R. A. Rajagede, “Analisis Sentimen Berbasis Aspek pada Ulasan Pengguna Aplikasi Starbucks Menggunakan Algoritma Support Vector Machine,” Journal of Internet and Software Engineering, vol. 5, no. 1, 2024.
A. Fitriyani and A. Triayudi, “SENTIMENT ANALYSIS OF REKSADANA ON BIBIT APPLICATIONS USING THE NAÏVE BAYES METHOD AND K-NEAREST NEIGHBOR (KNN)id 2) (*) Corresponding Author.”
Fitriani, “Comparison of Naïve Bayes and KNN Algorithms in the Analysis of Public Sentiment Regarding the Implementation of Government Employees With Teacher Work Agreements,” 2023.
B. Yang, “Sentiment Analysis Based on Transformer,” International Journal of Computer Science and Information Technology, vol. 3, no. 1, pp. 144–148, Jun. 2024, doi: 10.62051/ijcsit.v3n1.19.
M. I. Hutapea and A. P. Silalahi, “Moderna’s Vaccine Using the K-Nearest Neighbor (KNN) Method: An Analysis of Community Sentiment on Twitter,” Jurnal Penelitian Pendidikan IPA, vol. 9, no. 5, pp. 3808–3814, May 2023, doi: 10.29303/jppipa.v9i5.3203.
A. Rachmadana Ismail, R. Bagus, F. Hakim, and R. Artikel, “Implementasi Lexicon Based Untuk Analisis Sentimen Dalam Mengetahui Trend Wisata Pantai Di DI Yogyakarta Berdasarkan Data Twitter P-ISSN E-ISSN,” 2023.
T. A. Q. Putri, A. Triayudi, and R. T. Aldisa, “Implementasi Algoritma Decision Tree dan Naïve Bayes Untuk Klasifikasi Sentimen Terhadap Kepuasan Pelanggan Starbucks,” Journal of Information System Research (JOSH), vol. 4, no. 2, pp. 641–649, Jan. 2023, doi: 10.47065/josh.v4i2.2949.
M. D. Rizkiyanto, M. D. Purbolaksono, and W. Astuti, “Sentiment Analysis Classification on PLN Mobile Application Reviews using Random Forest Method and TF-IDF Feature Extraction,” INTEK: Jurnal Penelitian, vol. 11, no. 1, pp. 37–43, Apr. 2024, doi: 10.31963/intek.v11i1.4774.
A. I. KABIR, K. AHMED, and R. KARIM, “Word Cloud and Sentiment Analysis of Amazon Earphones Reviews with R Programming Language,” Informatica Economica, vol. 24, no. 4/2020, pp. 55–71, Dec. 2020, doi: 10.24818/issn14531305/24.4.2020.05.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jasmine Nabila, Ida Ayu Devian Branitasandhini Putra, Heri Wijayanto

This work is licensed under a Creative Commons Attribution 4.0 International License.
<a rel="license" href="http://creativecommons.org/licenses/by/4.0/"><img alt="Lisensi Creative Commons" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />Ciptaan disebarluaskan di bawah <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">Lisensi Creative Commons Atribusi 4.0 Internasional</a>.