Implementation of Convolutional Neural Network for Detecting Cataract Disease Severity in Eye Images
DOI:
https://doi.org/10.61179/infact.v9i01.712Keywords:
cataract, convolutional neural network, Deep LearningAbstract
Cataract is a condition that causes clouding of the lens of the eye, leading to blindness and poor vision. According to the WHO, around 18 million people suffer from cataract-related blindness, making it one of the leading causes of blindness globally. Prompt and accurate diagnosis is essential to prevent more serious outcomes. This research aims to develop a deep learning model that utilises Convolutional Neural Networks (CNN) in categorising cataract severity into four groups: hypermature, normal, immature and mature. This model is expected to provide a more efficient and accurate alternative to traditional methods in diagnosing cataracts. To achieve this, we implemented transfer learning using three popular CNN architectures: VGG16, VGG19, and ResNet50. Experiments were conducted using a dataset of pre-labelled eye images for training. Model performance was evaluated by calculating F1-score, recall, accuracy, and precision using a confusion matrix. The results showed that VGG19 produced 88% accuracy and F1-score of 0.87, while VGG16 had the best accuracy. On the other hand, ResNet50 showed the lowest accuracy with 63% and F1-score of 0.59. These findings highlight the importance of selecting the right CNN architecture for cataract diagnosis, while underlining the potential application of deep learning in ophthalmology.
References
Ichsan, Moh. (2022). Edukasi Kesehatan Mata dan Deteksi Dini Gangguan Mata pada Santri di Pondok Pesantren. Madago Community Empowerment for Health Journal, 1(2), 32–39. https://doi.org/10.33860/mce.v1i2.658
Flaxman, S. R., Bourne, R. R. A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli, M. v., Das, A., Jonas, J. B., Keeffe, J., Kempen, J., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Silvester, A., Stevens, G. A., Tahhan, N., Wong, T., Taylor, H., … Zheng, Y. (2017). Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. The Lancet Global Health, 5(12), e1221–e1234. https://doi.org/10.1016/S2214- 109X(17)30393-5
Sari, D. A., Masriadi, & Arman. (2018). Faktor Risiko Kejadian Katarak Pada Pasien Pria Usia 40-55 Tahun Dirumah Sakit Pertamina Balikpapan. Jurnal Kesehatan,
(2). https://doi.org/https://doi.org/10.33096/woh.v1i2.645
Kemenkes RI. (2021, October 12). Katarak Penyebab Terbanyak Gangguan Penglihatan di Indonesia. Https://Sehatnegeriku.Kemkes.Go.Id/Baca/Umum/2021101 2/5738714/Katarak-Penyebab-Terbanyak-Gangguan- Penglihatan-Di-Indonesia/.
Tan, Y. Y., Kang, H. G., Lee, C. J., Kim, S. S., Park, S.,
Thakur, S., da Soh, Z., Cho, Y., Peng, Q., Tham, Y. C., Rim,
T. H., & Cheng, C. Y. (2024). Prognostic potentials of AI in ophthalmology: systemic disease forecasting via retinal imaging. In Eye and Vision (Vol. 11, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40662-024-00384-3
Gunawan, D., & Setiawan, H. (2022). Convolutional Neural Network dalam Analisis Citra Medis (Vol. 2, Issue 2).
https://doi.org/https://doi.org/10.24002/konstelasi.v2i2.536 7
Elkholy, M., & Marzouk, M. A. (2024). Deep learning- based classification of eye diseases using Convolutional Neural Network for OCT images. Frontiers in Computer Science, 5. https://doi.org/10.3389/fcomp.2023.1252295
Cahya, N. F., Hardi, N., Riana, D., & Hadianti, S. (2021). Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network ( CNN). SISTEMASI: Jurnal Sistem Informasi, 10.
https://doi.org/DOI:https://doi.org/10.32520/stmsi.v10i3.12 48
KC, J., Acharya, A., Devkota, K., & Shrestha, S. (2023). Deep Convolutional Neural Network and Transfer Learning to Classify Cataract Based on Fundus Images. 3(2). https://doi.org/https://dx.doi.org/10.30630/joiv.6.1.856
Firdaus, H. D., Imran, B., Darmawan Bakti, L., & Suryadi, E. (2022). KLASIFIKASI PENYAKIT KATARAK PADA MATA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)
BERBASIS WEB. Jurnal Kecerdasan Buatan Dan Teknologi Informasi (JKBTI), 1(3), 18–26. https://doi.org/https://doi.org/10.69916/jkbti.v1i3.6
Qulub, M. S., & Agustin, S. (2024). INDENTIFIKASI PENYAKIT MATA DENGAN KLASIFIKASI CITRA FOTO FUNDUS MENGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN). Jurnal
Mahasiswa Teknik Informatika, 8(5). https://doi.org/ttps://doi.org/10.36040/jati.v8i5.10974
Pardede, J., & Purohita, A. S. (2023). The Advantage of Transfer Learning with Pre-Trained Model in CNN Towards Ct-Scan Classification. 9(2). https://doi.org/https://doi.org/10.23917/khif.v9i2.19872
Yang, H., Ni, J., Gao, J., Han, Z., & Luan, T. (2021). A novel method for peanut variety identification and classification by Improved VGG16. Scientific Reports,
(1). https://doi.org/10.1038/s41598-021-95240-y
Vardhan, K. B., Nidhish, M., Kiran C., S., Nahid Shameem, D., Sai Charan, V., & R.M., B. (2024). Eye Disease Detection Using Deep Learning Models with Transfer Learning Techniques. ICST Transactions on Scalable Information Systems, 11.
https://doi.org/10.4108/eetsis.5971
Kulkarni, A., Chong, D., & Batarseh, F. A. (2020). Foundations of data imbalance and solutions for a data democracy. In Data Democracy: At the Nexus of Artificial Intelligence, Software Development, and Knowledge Engineering (pp. 83–106). Elsevier. https://doi.org/10.1016/B978-0-12-818366-3.00005-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fanny Fadlilatunnisa, Agung Mulyo Widodo

This work is licensed under a Creative Commons Attribution 4.0 International License.
<a rel="license" href="http://creativecommons.org/licenses/by/4.0/"><img alt="Lisensi Creative Commons" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />Ciptaan disebarluaskan di bawah <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">Lisensi Creative Commons Atribusi 4.0 Internasional</a>.