Enhanced Dermatological Diagnosis: Autoimmune and Non-Autoimmune Skin Disease Classification Using MobileNet and ResNet

Authors

  • Tyara Regina Nadya Putri Department of Computer Science, Universitas Esa Unggul
  • Agung Mulyo Widodo Department of Computer Science, Universitas Esa Unggul

DOI:

https://doi.org/10.61179/infact.v9i01.711

Keywords:

Autoimmune, Deep Learning, convolutional neural network, MobileNet, ResNet

Abstract

Autoimmune diseases arise when the immune system mistakenly attacks the body's healthy cells, causing a range of symptoms that can greatly affect a patient's quality of life. In Indonesia, these conditions present a significant public health concern. According to research by Ministry of Health Republic Indonesia in 2024, autoimmune lupus affects approximately 0.5% of the population, impacting over 1.3 million individuals. This study proposes a classification and detection model utilizing Convolutional Neural Networks (CNN) with transfer learning, incorporating MobileNetV2, MobileNetV3Small, MobileNetV3Large, ResNet50, ResNet101, and ResNet152 architectures. The model's performance is assessed using a confusion matrix, evaluating precision, recall, and F1-score, while computational efficiency is analyzed using a GPU T4. Experimental results demonstrate that ResNet152 achieved the highest accuracy at 92%. These findings emphasize the crucial role of selecting an optimal CNN architecture to enhance the accuracy of autoimmune and non-autoimmune skin disease classification and detection.

References

A. Muhawarman, “Kemenkes Tingkatkan Upaya Deteksi Dini Lupus Melalui Program SALURI,” Kemenkes. [Online]. Available: https://www.kemkes.go.id/id/kemenkes-tingkatkan-upaya-deteksi-dini-lupus-melalui-program-saluri

Hayati, “Tren Lupus di Indonesia Meningkat, Pasien Rujuk Balik Baru 2.000-an Orang,” 2023.

A. Faisal, “Kesadaran masyarakat perkotaan terhadap penyakit autoimun semakin baik,” ANTARA. Accessed: Jan. 14, 2025. [Online]. Available: https://www.antaranews.com/berita/4125207/kesadaran-masyarakat-perkotaan-terhadap-penyakit-autoimun-semakin-baik

M. F. Naufal, “Analisis Perbandingan Algoritma SVM , KNN , dan CNN untuk Klasifikasi Citra,” no. March 2021, 2021, doi: 10.25126/jtiik.202184553.

L. Alzubaidi et al., Review of deep learning?: concepts , CNN architectures , challenges , applications , future directions. Springer International Publishing, 2021. doi: 10.1186/s40537-021-00444-8.

Y. Omori and Y. Shima, “Image Augmentation for Eye Contact Detection Based on Combination of Pre-trained Alex-Net CNN and SVM,” vol. 15, no. 3, pp. 85–97, 2020, doi: 10.17706/jcp.15.3.

S. M. and H.-S. P. Thwin, “Skin Lesion Classification Using a Deep Ensemble Model,” 2024.

M. Pal et al., “Deep and Transfer Learning Approaches for Automated Early Detection of Monkeypox ( Mpox ) Alongside Other Similar Skin Lesions and Their Classification,” 2023, doi: 10.1021/acsomega.3c02784.

M. Nawaz, A. A. Sewissy, and T. H. A. Soliman, “Multi-Class Breast Cancer Classification using Deep Learning Convolutional Neural Network,” vol. 9, no. 6, pp. 316–322, 2018.

M. Rasool et al., “A Hybrid Deep Learning Model for Brain Tumour Classification,” 2022.

N. Bhaswanth, “Psoriasis Classification of Different Types Based on Deep Learning Technique,” vol. 3, pp. 3445–3457, 2024.

D. Cascio, V. Taormina, and G. Raso, “Deep CNN for IIF Images Classification in Autoimmune Diagnostics,” 2019.

S. F. Aijaz, S. J. Khan, F. Azim, C. S. Shakeel, and U. Hassan, “Deep Learning Application for Effective Classification of Different Types of Psoriasis,” vol. 2022, 2022.

A. Eskandari and M. Sharbatdar, “Efficient diagnosis of psoriasis and lichen planus cutaneous diseases using deep learning approach,” Sci. Rep., pp. 1–18, 2024, doi: 10.1038/s41598-024-60526-4.

M. Hammad, P. P?awiak, M. Elaffendi, A. A. A. El-latif, and A. A. A. Latif, “Enhanced Deep Learning Approach for Accurate Eczema and Psoriasis Skin Detection,” 2023.

F. Muhammad et al., “Application of the Deep Convolutional Neural Network for the Classification of Auto Immune Diseases,” 2023, doi: 10.32604/cmc.2023.038748.

M. Heydarian and T. E. Doyle, “MLCM?: Multi-Label Confusion Matrix,” IEEE Access, vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.

Downloads

Published

2025-03-17

How to Cite

[1]
Tyara Regina Nadya Putri and A. M. Widodo, “Enhanced Dermatological Diagnosis: Autoimmune and Non-Autoimmune Skin Disease Classification Using MobileNet and ResNet”, IIJC, vol. 9, no. 01, pp. 44–55, Mar. 2025.