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Abstract   

Autoimmune diseases arise when the immune system 

mistakenly attacks the body's healthy cells, causing a range of 

symptoms that can greatly affect a patient's quality of life. In 

Indonesia, these conditions present a significant public health 

concern. According to research by Ministry of Health Republic 

Indonesia in 2024, autoimmune lupus affects approximately 

0.5% of the population, impacting over 1.3 million individuals. 

This study proposes a classification and detection model 

utilizing Convolutional Neural Networks (CNN) with transfer 

learning, incorporating MobileNetV2, MobileNetV3Small, 

MobileNetV3Large, ResNet50, ResNet101, and ResNet152 

architectures. The model's performance is assessed using a 

confusion matrix, evaluating precision, recall, and F1-score, 

while computational efficiency is analyzed using a GPU T4. 

Experimental results demonstrate that ResNet152 achieved the 

highest accuracy at 92%. These findings emphasize the crucial 

role of selecting an optimal CNN architecture to enhance the 

accuracy of autoimmune and non-autoimmune skin disease 

classification and detection. 
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1. Introduction 

Autoimmune diseases occur when the immune system 

attacks healthy cells, leading to various symptoms that can 

significantly impact quality of life. These conditions often 

cause chronic pain, fatigue, and skin rashes, leading to 

physical and emotional distress for patients. In Indonesia, 

autoimmune diseases pose a major public health challenge. 

According to research conducted by the Indonesian Ministry 

of Health, thse prevalence of lupus is estimated at 0.5%, 

affecting over 1.3 million people, predominantly women 

aged 15-45 years [1]. However, patient care remains limited 

due to factors such as inadequate healthcare facilities, lack of 

physician awareness, restricted medication availability, and 

insufficient pharmacies providing necessary drugs [2]. 

Technological advancements have improved access to health 

information, increasing public awareness of autoimmune 

diseases. Neurologist Dr. Rocksy Fransisca V Situmeang 

Sp.S noted a significant rise in awareness over the past 

decade, particularly in urban areas, as people actively seek 

information about their symptoms [3]. Despite this progress, 

many patients continue to experience prolonged discomfort 

due to late diagnosis and inadequate treatment options. Deep 

learning presents an innovative approach to improving early 

detection of autoimmune diseases, particularly those 

manifesting as skin rashes. Convolutional Neural Networks 

(CNN) have shown superior performance in analyzing large-

scale medical images, distinguishing between autoimmune 

and non-autoimmune conditions. Convolutional Neural 

Networks (CNN) surpass traditional algorithms like K-

Nearest Neighbor (KNN) and Support Vector Machine 

(SVM) by automatically and efficiently extracting image 

features, making them highly effective for image 

classification tasks [4]. However, limited awareness of early 

detection results in insufficient image data for analysis. To 

address this, data augmentation techniques such as rotation, 

cropping, and color adjustments enhance dataset diversity, 

making models more robust. Data augmentation serves as a 

powerful technique to expand the dataset while 

simultaneously preventing overfitting, ensuring the model 

generalizes well to new data [5]. Additionally, transfer 

learning can expedite training and improve model accuracy 

by leveraging pre-trained datasets. Transfer learning in 

Convolutional Neural Networks (CNN) allows the use of 

knowledge from previously trained models to improve 

performance on new tasks. 

CNN extracts features from images through convolution and 

pooling layers to detect local patterns such as edges or 

corners. After that, the fully connected and output layers 

classify the image based on the extracted features. CNNs are 

widely favored in deep learning for their capability to extract 

essential features and reduce dimensionality without 

compromising the core characteristics of an image, making 

them ideal for complex visual recognition tasks [6]. 

Convolutional Neural Networks (CNNs) have been widely 

utilized in medical imaging for disease detection, 

demonstrating remarkable success through transfer learning. 

From identifying skin lesions and mpox to diagnosing breast 

cancer and brain tumors [7], [8], [9], [10], CNN-based 

models have significantly enhanced accuracy and efficiency  

in medical diagnostics. By leveraging pre-trained 

architectures, these models can efficiently analyze complex 

medical images, enabling faster and more reliable disease 

classification. Several previous studies have explored the 

development of classification models for autoimmune 

diseases; however, their scope has been largely limited. Most 

of these studies focus on a single autoimmune disease, 

particularly psoriasis [11], without extending to a broader 

range of autoimmune conditions. Additionally, many 

existing models rely on fluoroscopy specimens [12], which, 

while effective, may not fully capture the diversity of skin 

manifestations across different autoimmune disorders. This 

limitation highlights the need for a more comprehensive 

approach that can classify multiple autoimmune skin 

diseases as well as non-autoimmune skin conditions that 

exhibit similar rash-like symptoms, using diverse medical 

imaging techniques. 

Therefore, in this paper, we propose a deep learning-based 

classification model capable of distinguishing between 

multiple autoimmune and non-autoimmune skin diseases, 

addressing the limitations of prior studies that primarily 

focused on a single condition. Unlike previous works that 

rely on fluoroscopy specimens, our approach leverages 

diverse medical imaging, enhancing its applicability across 

various dermatological conditions. By employing 

convolutional neural networks (CNNs) such as 

MobileNetV2, MobileNetV3Small, MobileNetV3Large, 

ResNet50, ResNet101, ResNet152 with additional layers, 

our model aims to improve diagnostic accuracy and broaden 

the scope of automated skin disease classification. The 

research involves data collection, annotation, preprocessing, 

and augmentation to enhance model robustness. 

Furthermore, hyperparameter optimization, including 

learning rate, epoch, and optimizer tuning, is applied to 

achieve the best model performance in classification and 

detection tasks. 

This research is expected to contribute as follows: 

o Enhancing early detection and diagnosis of skin 

diseases, enabling faster and more accurate treatment, 

which can significantly improve patient outcomes 

and quality of life. 

o Supporting dermatologists and healthcare 

professionals by providing an AI-driven tool that 

streamlines the identification of autoimmune and 

non-autoimmune skin conditions, reducing 

diagnostic errors and improving efficiency. 

o Driving advancements in medical image processing 

through the development of an optimized deep-

learning approach, paving the way for more 

innovative and accessible skin disease detection 

technologies in the future. 

 
2. Related Works 

Several studies have explored the application of deep 

learning models for classifying skin diseases, particularly 

autoimmune conditions. One study utilized skin images to 

classify six categories, including normal skin and five types 

of psoriasis, with an initial dataset of 301 images, which 

expanded to 1,838 after augmentation. The study employed 
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the VGG-19 model which is known for having Multiple 

Convolutional Layers with small kernels, achieving an 

accuracy of 84%; however, the model exhibited overfitting, 

with a training accuracy of 97% and validation accuracy of 

84% [13]. Another study focused on classifying psoriasis and 

lichen planus using ResNet-50 which is known for having 

Residual Blocks to overcome vanishing gradient, obtaining 

an accuracy of 89% with a balanced dataset of 1,836 images 

[14]. Further research classified eczema and psoriasis using 

an augmented dataset of 6,286 images. It tested pretrained 

models, achieving 60% accuracy with AlexNet, 58% with 

ResNet, and 82% with VGG-16. Additionally, a custom 

model named "Derma Care" was developed, outperforming 

the pretrained models with an accuracy of 88% [15]. Another 

approach analyzed autoimmune diseases using body cell 

images, testing multiple pretrained models. The results 

showed 88% accuracy with MobileNet which is known for 

having Depthwise Separable Convolution reduces 

parameters and computation and Pointwise Convolution 

improves feature efficiency, 92% with InceptionV3 which is 

known for having Inception Modules with various kernel 

sizes in one block, Factorized Convolutions to break up large 

convolutions, and Auxiliary Classifiers to speed up 

convergence, 95% with DenseNet-121 which is known for 

having Dense Blocks and Bottleneck Layers to reduce the 

number of parameters, and 78% with VGG-16 [16]. 

Different research classified six different autoimmune 

disease specimens employed AlexNet which is known for 

having Convolutional Layers with large kernels to extract 

important features without the need for many layers and 

achieved an accuracy of 96% [12]. Another research 

classified six categories, including normal skin and five 

psoriasis types, utilizing MobileNetV2 and VGGNet-19, 

achieving 92% and 93% accuracy, respectively. 

Furthermore, a custom model named "DWSCNN" was 

developed, surpassing pretrained models with an accuracy of 

96% [11]. Although previous studies have shown promising 

results by utilizing various pretrained models that have 

significantly improved accuracy and mAP, most remain 

limited to specific classifications and have not addressed the 

challenge of distinguishing between autoimmune and non-

autoimmune diseases with similar manifestations. 

In comparison, our research not only leverages pretrained 

models but also incorporates additional layers and explores 

various experimental techniques to optimize model 

performance. By systematically adjusting the model 

architecture and implementing different training strategies, 

we aim to develop a model that achieves good fitting, 

attaining high accuracy while minimizing overfitting. This 

approach enables a more robust and reliable classification 

system, allowing for better differentiation of various skin 

conditions within a more complex medical context. 
 

3. Methods 

3.1 Dataset 

The dataset used in this study was obtained from publicly 

accessible sources, including the ISIC 2020 Archive, 

DermNet, and Te Whatu Ora Health New Zealand. These 

platforms provide a vast collection of high-quality 

dermatological images that have been carefully curated for  

research and medical purposes. All images utilized in this 

study have been verified by expert dermatologists, 

reinforcing their reliability for deep learning-based 

classification models. The dataset used consists of 2764 

images divided into 8 classes, including autoimmune 

diseases such as dermatomyositis with 128 images, lichen 

planus with 251 images, psoriasis with 667 images, and 

vitiligo with 368 images, as well as non-autoimmune 

diseases such as eczema with 512 images, herpes with 222 

images, seborrheic keratosis with 208 images, and tinea with 

408 images indicates that there is an imbalance in the number 

of datasets for each class. An imbalance in the number of 

dataset samples across classes can lead the model toward 

overfitting, a challenge that will be explored further in 

Section 3. Figure 2 illustrates the different skin disease 

classes included in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 Various skin disease in proposed work 

3.2 Processing Data 

To overcome problems found in the dataset, such as 

variations in image size and imbalance in the number of 

images between classes, a preprocessing process is required 

which aims to prepare the data to be more consistent and 

optimal before being used in model training to improve 

model performance.  

3.3 Data Augmentation 

In machine learning and deep learning, both the quality and 

quantity of data play a crucial role in shaping the 

effectiveness of the model training process. Augmentation 

will increase the amount and diversity of training data by 

applying certain transformations to existing data. This 

augmentation technique is applied through certain 

transformations to existing data, the author performs rotate, 

flip left right, flip top bottom, zoom, crop, resize, brightness, 

and contrast transformations which aim to improve the 

model's generalization ability. In this study, the author uses 

the python library Augmentor by increasing the number of 

samples by 1500 for each class which will help develop a 

stronger model and be able to generalize better.  

3.4 Data Distribution 

The dataset is systematically divided into training, 

validation, and testing sets using a structured data 

partitioning method in model development. This approach 

ensures that each subset maintains a balanced class 

distribution, preserving diversity across the training and  
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testing phases. The data is allocated into three categories: 

40% for training, 40% for validation, and 20% for testing, 

allowing the model to learn effectively while ensuring 

reliable performance evaluation. 

 
3.5 Convolutional Neural Network 

CNN as a subcategory of Artificial Neural Networks (ANN) 

is widely used in computer vision because of its ability to 

extract features and filter important information from 

images. CNN works by extracting features and filtering 

important information from image data through a series of 

convolution and pooling layers that aim to detect local 

patterns or features, such as edges or corners. Once the 

features are extracted, the network will proceed to the 

classification section which usually involves several fully 

connected layers and an output layer to classify images based 

on the features to produce class or category predictions. 

Figure 3 represents a common CNN architecture that has 

been widely developed. 

 

 

 

 

 

 

 

 

 

 

Figure 2 CNN Architecture 

The CNN architecture consists of two key components:  

The feature extraction layer, which captures essential 

patterns from input data, and the classification layer, which 

interprets these features to make predictions.  

Feature Extraction 
o Input layer 

The input layer stores the pixel values of the given 

image along with its color channels (RGB), serving as 

the foundation for further processing in the CNN 

architecture.  

 
o Convolutional layer 

The convolutional layer extracts features from input 

data using filters (kernels) that slide across the image, 

performing convolution operations. This process 

generates feature maps that highlight essential 

information such as edges, textures, and shapes. Figure 

4 below shows the process of the convolution layer. 
 

 

 

 

 

 

 

 

 

 
Figure 3 Overview of the convolutional layer process 

o Pooling Layer 

The pooling layer minimizes the dimensions of the 

feature map produced by the convolutional layer by 

applying a filtering technique. In max pooling, this 

process extracts the highest value from each localized 

region of the feature map, retaining the most critical 

details, such as edges and key patterns within the 

image. Figure 5 illustrates the differences between 

various types of pooling. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4 Overview of the pooling layer process 

Classification 
o Flatten Layer 

After passing through a series of convolutional and 

pooling layers, the feature maps typically retain high-

dimensional structures. The Flatten layer serves to 

convert these high-dimensional representations into a 

one-dimensional vector, making them suitable for 

processing in subsequent fully connected layers. This 

layer acts as a bridge between the feature extraction 

phase and the decision-making process within the 

neural network. 

 

 

 

 

 

 

 

 

 
Figure 5 Overview of the flatten layer process 

o Fully Connected Layer 

The Fully Connected layer establishes connections 

between every neuron in the preceding layer and each 

neuron in the subsequent layer, enabling the processing 

and classification of extracted features. It comprises 

multiple hidden layers integrated with activation 

functions such as ReLU, which activates only neurons 

with positive values to introduce non-linearity, while 

the output layer delivers the final prediction based on 

the refined data.  

 
o Output Layer 

The Output Layer plays a crucial role in producing the 

final prediction, typically utilizing a softmax classifier  
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for multi-class classification. Each neuron in this layer 

corresponds to a specific class, with the output values 

representing the probability of the input being classified into 

each respective category.  

3.6 Transfer Learning 

Transfer learning is a machine learning technique that 

leverages a model pre-trained on a vast dataset to tackle a 

different yet related task. This technique accelerates training 

and enhances model performance by leveraging previously 

learned features, which can then be passed to additional 

layers for further training. One of the most widely used 

datasets for transfer learning is ImageNet, a widely utilized 

dataset in transfer learning, consists of millions of labeled 

images spanning thousands of categories, making it a 

valuable resource for model training. Pre-trained models on 

ImageNet can be utilized as feature extractors, where only 

the final layers are adjusted for the new task, or through fine-

tuning, which allows for the modification of weights in some 

or all layers to improve accuracy on a smaller, domain-

specific dataset. As shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 Transfer Learning 

In this research there are 7 pretrained model architectures 

used: 

1) MobileNetV2 

MobileNetV2 introducing inverted residual blocks with 

linear bottlenecks, which helps maintain low computational 

costs while preserving representational power. Unlike 

traditional CNNs, MobileNetV2 employs depthwise 

separable convolutions to minimize parameter count and 

computational demands, enhancing efficiency without 

compromising performance. The network consists of 17 

layers of inverted residual blocks, where each block features 

depthwise convolutions followed by 1x1 pointwise 

convolutions. This structure enhances feature reuse and 

gradient flow. 

 
2) MobileNetV3Small 

MobileNetV3 Small is an optimized version of MobileNetV3 

that integrates squeeze-and-excitation (SE) modules for 

better channel-wise attention and uses hard-swish (h-swish) 

activation functions to improving non-linearity while 

maintaining efficiency. The architecture includes bottleneck 

residual blocks, but compared to MobileNetV2, it reduces the  

number of layers and parameters, making it more suitable for 

real-time applications with limited processing power. 

 
3) MobileNetV3Large 

MobileNetV3 Large is a more powerful version of 

MobileNetV3 that retains the squeeze-and-excitation (SE) 

modules, hard-swish activations, and depthwise separable 

convolutions from MobileNetV3 Small but incorporates 

more bottleneck layers for improved feature extraction. The 

architecture consists of larger kernel sizes and more 

activation layers, allowing it to process complex patterns 

while still being optimized for mobile applications. 

 

4) ResNet50 

ResNet50 is a deep convolutional neural network with 50 

layers, comprising convolutional layers, batch 

normalization, ReLU activations, and fully connected layers. 

What makes ResNet unique is its residual connections, or 

skip connections, which enable the model to bypass specific 

layers and transfer information directly. This mechanism 

helps mitigate the vanishing gradient problem in deep 

networks, allowing for more efficient training. ResNet50 is 

structured into four stages of residual blocks, each containing 

three bottleneck layers that optimize parameter efficiency 

while preserving powerful feature extraction capabilities. 

 
5) ResNet101 

ResNet101 extends the architecture of ResNet50 by 

increasing its depth to 101 layers, consisting of 33 bottleneck 

residual blocks. The deeper architecture allows the model to 

learn more complex patterns and hierarchical features from 

images, improving its performance on high-resolution and 

large-scale datasets. 

 
6) ResNet152 

ResNet152 is an even deeper variant of the ResNet family, 

featuring 152 layers with 50 bottleneck residual blocks, 

making it one of the deepest networks available for feature 

extraction. Its extreme depth enhances the model’s ability to 

learn highly abstract representations, making it ideal for 

highly complex tasks such as satellite image analysis, 

autonomous driving, and industrial defect detection.  

3.7 System Design 

Figure 8 shows the framework used to implement this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7 Framework 
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Based on the framework in the figure 7, this study employs 

two primary methods: classification and object detection, 

aiming to evaluate both model effectiveness and 

computational efficiency. The classification method begins 

with dataset collection, followed by image preprocessing to 

enhance data quality and data augmentation to improve 

model generalization. The processed dataset is then split into 

training, validation, and test sets. The model development 

utilizes various CNN architectures, including MobileNetV2, 

MobileNetV3Small, MobileNetV3Large, ResNet50, 

ResNet101, and ResNet152, integrated with additional layers 

such as Flatten, Fully Connected, Dropout, and Output 

layers. Grad-CAM is employed to provide interpretability by 

visualizing model decisions. 

The effectiveness of the models is evaluated using metrics 

such as accuracy, precision, recall, and F1-score, while 

computational efficiency is measured based on runtime 

performance on GPU (T4). This approach ensures optimal 

performance in both prediction accuracy and resource 

utilization. 

1. Proposed Classification Model Architecture 

This study focuses on developing a classification model for 

distinguishing between autoimmune and non-autoimmune 

skin diseases using image-based analysis. The model utilizes 
a pre-trained CNN architecture as the input layer to leverage 

transfer learning, enhancing feature extraction and 
accelerating training. To refine the classification process, 

eight additional layers are incorporated, including Flatten, 

Dropout, BatchNormalization, Fully Connected layers with 
Dense + ReLU activation, and an Output layer with a 

Softmax classifier. These layers improve the model’s 

robustness, reduce overfitting, and optimize classification 
accuracy. Figure 8 provides an overview of the model 

architecture used in this study. 

 

 

 

 

 

 

 

 

 

 
 

Figure 8 Classification Model Development 

o Input layer: The model starts with a pre-trained CNN 
architecture such as MobileNetV2, 
MobileNetV3Small, MobileNetV3Large, ResNet50, 
ResNet101, and ResNet152 trained on ImageNet, 
designed to process input images with dimensions 
224×224 pixels, where 224×224 represents the spatial  

resolution and 3 channels correspond to the RGB color 
space. This layer leverages transfer learning to extract 
meaningful features from skin disease images 
efficiently, utilizing max pooling for spatial 
downsampling. 

o Flatten: Transforms the multi-dimensional feature 

maps from the pre-trained model into a one-

dimensional vector, ensuring compatibility with the 

fully connected layers for further processing. 

o Dropout Layer (0.25): Applies a 25% dropout rate to 
minimize overfitting by randomly disabling neurons 
during training, enhancing the model’s ability to 
generalize effectively. 

o BatchNormalization Layer: Normalizes activations 
across the batch, stabilizing training by reducing 
internal covariate shifts and improving convergence 
speed. 

o Fully Connected Layer (Dense 256 + ReLU): A 
dense layer with 256 neurons and ReLU activation, 
responsible for learning high-level representations 
from the extracted features. 

o Dropout Layer (0.25): Another dropout layer with a 
25% rate, maintaining model regularization to enhance 
robustness. 

o Fully Connected Layer (Dense 128 + ReLU): 
Incorporates a dense layer with 128 neurons and a 
ReLU activation function, optimizing feature 
representation and improving classification 
performance. 

o Dropout Layer (0.25): An additional dropout layer 
with 25% rate, reducing dependency on specific 
neurons and improving model generalization. 

o Output Layer (Dense 8 + Softmax): The final fully 
connected layer with 8 neurons corresponds to the 
number of disease classes, utilizing a Softmax 
activation function to output probability distributions 
for classification. 

3.8 Training Model 

To avoid overfitting in improving models, techniques such 

as early stopping are used in training deep learning models. 

This technique prevents the model from being overtrained by 

stopping the training when the data performance no longer 

improves. In addition, model checkpoints automatically 

save the best model during training, so that the best 

performing model can be used without retraining. The 

implementation of callback accuracy targets is also used to 

manually stop training when the model has reached the set 

accuracy target. 

3.9 Evaluation of Model Effectiveness 

The confusion matrix is a crucial evaluation tool for 

assessing the performance of a classification model. It 

presents a matrix comparison between predicted and actual 

values from the test data, offering insights into how 

effectively the model classifies each class. By utilizing a 

confusion matrix, the number of correct and incorrect 

predictions for each category is systematically displayed, 

allowing for the calculation of key evaluation metrics such 

as accuracy, precision, recall, and F1-score [17]. his matrix 

comprises four primary components that illustrate the 

relationship between model predictions and actual  
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classifications: True Positive (TP), representing correctly 

predicted positive instances; True Negative (TN), indicating 

correctly identified negative instances; False Positive (FP), 

where negative instances are misclassified as positive; and 

False Negative (FN), where positive instances are mistakenly 

labeled as negative. A visual representation of the confusion 

matrix is provided in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Confusion Matrix 

This research assesses system performance based on F1 

score, accuracy, recall, and precision. The calculation results 

of these performance measurements are shown in (1), (2), 

(3), and (4). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + +𝐹𝑁
 

(3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4) 

3.10 Evaluation of Model Efficiency 

Each model development in this study uses the T4 GPU, 

which is known to be efficient in execution time for deep 

learning training and inference. With its power-efficient and 

high-performance architecture, the T4 GPU enables fast and 

optimal data processing. An overview use of T4 GPU as 

runtime type is shown in Figure 10. 

 

 

 

 

 

 

 
 

Figure 10 GPU T4 

This study utilizes the pretrained architectures 

MobileNetV2, MobileNetV3Small, MobileNetV3Large, 

ResNet50, ResNet101, and ResNet152, which have different 

layer depths. These differences affect the complexity, 

number of output parameters, and execution time efficiency 

during training and inference.  

4. Results and Discussion 
The difference in data quantity between Table 1 and Table 

2 highlights the impact of data augmentation in this study. 

Table 1 presents the original dataset before augmentation, 

which consists of a limited number of images, potentially 

restricting the model’s ability to generalize across diverse 

cases. In contrast, Table 2 showcases the dataset after 

augmentation, where techniques such as rotation, flipping, 

scaling, and color adjustments have been applied to 

artificially expand the dataset. This augmentation process 

enhances model robustness by increasing variation within 

the training data, reducing overfitting, and improving overall 

classification and detection performance. 

 

No. Directory Percent Amount Data 

1 Train 40% 1337 

2 Validation 40% 891 

3 Test 20% 558 

Total 2786 
Table 1 Unaugmented Data Distribution 

No. Directory Percent Amount Data 

1 Train 40% 5760 

2 Validation 40% 3840 

3 Test 20% 2400 

Total 12000 
Table 2 Augmented Data Distribution 

4.1 Experiment A Result (Augmented Data) 

Experiment A utilized augmented data during both training 

and testing phases, ensuring the model learns from a more 

diverse dataset, thereby enhancing its generalization 

capability and robustness. In this study, hyperparameter 

tuning was conducted to optimize model performance during 

training. Key parameters such as batch size, learning rate, 

number of epochs, network layers, and optimizer type, as 

detailed in Table 3. 

 

No Hyperparameter 

1 Batch Size 32 

2 Layers 9 

3 Epoch 35 and 50 

4 Optimizer Adamax 

5 Learning Rate 0.0001 
Table 3 Experiment A Result 

The model is trained using various CNN architectures, 

including MobileNetV2, MobileNetV3Small, 

MobileNetV3Large, ResNet50, ResNet101, and ResNet152, 

with modifications applied to the structured layers on Figure 

8. The training process utilizes the Adamax optimizer and is 

conducted with different epoch settings, specifically 35 and 

50. A summary of the model’s performance metrics, 

including accuracy and loss across these epoch variations, is 
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presented in Table 4. 

 
Epoch Architecture Val_

Acc 

Acc Loss Val_

Loss 

 

 

 

35 

MobileNetV2 0.7904 0.7909 0.5618 0.5520 

MobileNetV3

Small 

0.7305 0.6728 0.8556 0.7297 

MobileNetV3

Large 

0.8039 0.7610 0.6417 0.5300 

ResNet50 0.9057 0.9501 0.1482 0.3045 

ResNet101 0.8922 0.9259 0.2091 0.3207 

ResNet152 0.8982 0.9223 0.2146 0.3159 

 

 

 

50 

MobileNetV2 0.8203 0.8368 0.4418 0.4864 

MobileNetV3

Small 

0.7766 0.7324 0.6980 0.6124 

MobileNetV3

Large 

0.8299 0.8136 0.4865 0.4559 

ResNet50 0.9198 0.9699 0.0935 0.3010 

ResNet101 0.9167 0.9593 0.1189 0.2898 

ResNet152 0.9203 0.9637 0.1049 0.2828 

Table 4 Training Result of Experiment A 

The experimental results indicate that the ResNet152 model 

with 50 epochs delivers the best performance, as evidenced 

by the minimal gap between training and validation loss. 

This outcome occurs due to a significant reduction in both 

training and validation loss values, as illustrated in Figure 

11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 11 Accuracy and Loss Graphics of ResNet152 Model 

(50 Epoch) 

At epoch 35, the MobileNetV2, MobileNetV3Large, 

ResNet50, ResNet101, and ResNet152 models exhibit good 

fitting conditions, maintaining a balance between training 

and validation performance. However, the 

MobileNetV3Small model shows signs of underfitting, 

indicating that it struggles to capture essential patterns from 

the data. By epoch 50, MobileNetV2, MobileNetV3Small, 

MobileNetV3Large, ResNet50 ResNet101, and ResNet152 

continue to demonstrate good fitting, suggesting stable and 

well-generalized learning.  

 

Using confusion matrices like accuracy, precision, recall, or 

F1-score, the model's performance is assessed at the 

evaluation stage following training. The results of the model 

evaluation experiments are shown in Table 5. 

Table 5 Evaluation Result of Experiment A 

 
In the first experiment with 35 epochs, the ResNet50 

architecture showed 90% accuracy, with precision, recall, 

and F1-score values consistent at 0.90 for macro average and 

weighted average. This shows that ResNet50 is able to 

recognise all classes in the early stages of training. ResNet152 

has an accuracy of 89%, slightly lower than ResNet50. In 

addition, ResNet50 shows stable performance with accuracy, 

recall, and F1 scores of 0.89 on weighted and macro 

averages. Then the ResNet101 architecture showed 89% 

accuracy, with precision, recall, and F1-score values 

consistent at 0.89 for macro average and weighted average. 

Then the MobileNetV3Large architecture showed 80% 

accuracy, with precision, recall, and F1-score values 

consistent at 0.78 for macro average and weighted average. 

Then the MobileNetV2 architecture showed 79% accuracy, 

with precision, recall, and F1-score values consistent at 0.80 

for macro average and weighted average. Lastly, 

MobileNetV3Small has very poor performance showed 73% 

accuracy, with precision, recall, and F1-score values 

consistent at 0.72 for macro average and weighted average. 

This performance indicates that MobileNetV3Small has 

difficulty identifying data patterns in the early stages of 

training. 

In the second experiment with 50 epochs, the ResNet152 

architecture showed 92% accuracy, with precision, recall, 

and F1-score values consistent at 0.91 for macro average and 

weighted average. This shows that ResNet152 is able to 

recognise all classes in the early stages of training. ResNet50 

has an accuracy of 91%, slightly lower than ResNet152. In 

addition, ResNet50 shows stable performance with accuracy, 

recall, and F1 scores of 0.91 on weighted and macro 

averages. The ResNet101 architecture achieved an accuracy 

of 91%, with precision, recall, and F1-score values 

consistently recorded at 0.91 for both the macro and 

weighted averages. Meanwhile, the MobileNetV3Large 

model demonstrated an accuracy of 82%, with its precision, 

recall, and F1-score maintaining a steady value of 0.81 for 

Epoch Architecture Accuracy Precision Recall F1-

Score 

 

 

 

35 

MobileNetV2 0.7904 0.80 0.78 0.78 

MobileNetV3

Small 

0.7305 0.72 0.72 0.71 

MobileNetV3

Large 

0.8039 0.78 0.76 0.75 

ResNet50 0.9057 0.90 0.90 0.89 

ResNet101 0.8922 0.90 0.89 0.89 

ResNet152 0.8982 0.89 0.88 0.88 

 

 

 

50 

MobileNetV2 0.8203 0.83 0.82 0.82 

MobileNetV3

Small 

0.7766 0.75 0.75 0.75 

MobileNetV3

Large 

0.8299 0.81 0.79 0.79 

ResNet50 0.9198 0.91 0.90 0.91 

ResNet101 0.9167 0.91 0.90 0.91 

ResNet152 0.9203 0.91 0.90 0.90 
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both macro and weighted averages. Similarly, 

MobileNetV2  

attained an accuracy of 82%, with precision, recall, and F1-

score values consistently at 0.82 for both evaluation metrics. 

In contrast, MobileNetV3Small exhibited the weakest 

performance, reaching only 77% accuracy, with precision, 

recall, and F1-score values remaining at 0.75 for macro and 

weighted averages. This performance indicates that 

MobileNetV3Small has difficulty identifying data patterns in 

the early stages of training. 

4.2 Experiment B Result (Non-Augmented Data) 

Experiment B was conducted using non-augmented data for 

both training and testing, allowing an evaluation of the 

model’s performance on raw, unaltered datasets. This 

approach helps assess how well the model generalizes 

without the benefits of increased data diversity. To ensure 

optimal performance during training, hyperparameter tuning 

was applied, adjusting key parameters such as batch size, 

learning rate, number of epochs, network layers, and 

optimizer type, as presented in Table 6. 

 

No Hyperparameter 

1 Batch Size 32 

2 Layers 9 

3 Epoch 50 

4 Optimizer Adamax 

5 Learning Rate 0.0001 
Table 6 Hyperparameter Experiment B 

The model is trained using various CNN architectures, 

including MobileNetV2, MobileNetV3Small, 

MobileNetV3Large, ResNet50, ResNet101, and ResNet152, 

with modifications applied to the structured layers on Figure 

9. The training process utilizes the Adamax optimizer and is 

conducted with different epoch 50. A summary of the 

model’s performance metrics, including accuracy and loss 

across these epoch variations, is presented in Table 7. 
Epoch Architecture Val_

Acc 

Acc Loss Val_

Loss 

 

 

 

 

50 

MobileNetV2 0.7531 0.8064 0.4978 0.6106 

MobileNetV3

Small 

0.6889 0.6167 1.0377 0.8906 

MobileNetV3

Large 

0.7568 0.7055 0.8081 0.7079 

ResNet50 0.8111 0.9379 0.2183 0.5335 

ResNet101 0.8077 0.8987 0.3142 0.5524 

ResNet152 0.7924 0.8912 0.2975 0.6080 

Table 7 Training Result of Experiment B 

The experimental results indicate that the ResNet50 model 

with 50 epochs delivers the best accuracy but not the best 

performance, as evidenced by the substansial gap between 

training and validation loss. This significant discrepancy 

suggests that while the model performs exceptionally well on 

the training data, its generalization to unseen validation data 

is limited, as shown in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 Accuracy and Loss Graphics of ResNet50 Model (Raw 

Data) 

At epoch 50, the MobileNetV3Small model demonstrates 

signs of underfitting, struggling to capture complex patterns 

from the data, leading to suboptimal performance on both 

training and validation sets. In contrast, the MobileNetV2 

and MobileNetV3Large models achieve a well-balanced 

state of good fitting, maintaining stable performance across 

training and validation. However, MobileNetV3Small 

continues to exhibit underfitting, indicating its limited 

learning capacity. Meanwhile, the ResNet50, ResNet101, 

and ResNet152 models show evident signs of overfitting, 

marked by a significant disparity between training and 

validation accuracy and loss values. This suggests that 

although these models excel on training data, their ability to 

generalize to new, unseen data is significantly reduced. 

 

Using confusion matrices like accuracy, precision, recall, or 

F1-score, the model's performance is assessed at the 

evaluation stage following training. The results of the model 

evaluation experiments are shown in Table 8. 

 
Epoch Architecture Accuracy Precision Recall F1- 

Score 

 

 

 

 

50 
 

 

 

MobileNetV2 0.8203 0.73 0.71 0.72 

MobileNetV3

Small 

0.7766 0.67 0.55 0.54 

MobileNetV3

Large 

0.8299 0.71 0.64 0.66 

ResNet50 0.9198 0.80 0.80 0.80 

ResNet101 0.9167 0.80 0.79 0.79 

ResNet152 0.9203 0.80 0.77 0.78 

Table 8 Evaluation Result of Experiment B 

In the first experiment with 50 epochs, the ResNet50 

architecture achieved an accuracy of 81%, with precision, 

recall, and F1-score values consistently at 0.80 for both 

macro and weighted averages. This indicates that ResNet50 

can effectively recognize all classes in the early stages of 

training. ResNet101 followed closely with an accuracy of 

80%, slightly lower than ResNet50, yet maintaining stable 

performance across all evaluation metrics. Meanwhile, 
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ResNet152 recorded an accuracy of 79%, with 

precision, recall, and F1-score values at 0.78 for both 

macro and weighted averages. Among the MobileNet 

models,  

MobileNetV3Large reached an accuracy of 75%, with 

precision, recall, and F1-score values at 0.71, while 

MobileNetV2 demonstrated a similar accuracy of 75%, but 

with slightly better precision, recall, and F1-score values at 

0.74. On the other hand, MobileNetV3Small exhibited the 

weakest performance, achieving only 68% accuracy, with all 

evaluation metrics consistently at 0.67. This result suggests 

that MobileNetV3Small struggles to identify meaningful 

data patterns in the early stages of training, leading to 

suboptimal performance. 

4.3 Prediction Result 

The prediction results of this classification model are 

visualized in Figure 13, which is represented by the help of 

the GradCam Heatmap tool for visualizing disease areas, 

how the model marks areas detected as skin diseases with a 

heatmap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Predisction Result of Classification 

Model using GradCam Heatmap 

 

4.4 Model Execution Results (Runtime) 

In this study, MobileNetV2, MobileNetV3Small, 

MobileNetV3Large, ResNet50, ResNet101, and ResNet152 

are used as pretrained model architectures, where each 

architecture has a different layer depth that directly affects 

the complexity and number of output parameters produced. 

These differences contribute to variations in performance 

and efficiency of model execution time during the training 

and inference process. Runtime information during model 

development can be seen in the following Table 10. 

 
No Arsitektur Trainable 

Parameters 

Epoch Runtime 

1 MobileNetV2 1,416,904 

(5.41 MB) 

35 01:18:07 

50 02:34:51 

50 02:32:26 

2 MobileNetV3Small 533,336 (2.03 

MB) 

35 01:09:34 

50 02:20:17 

50 02:15:35 

3 MobileNetV3Large 1,234,744 

(4.71 MB) 

35 01:13:57 

50 02:40:29 

50 02:36:48 

4 ResNet50 8,444,808 35 01:22:51 

(32.21 MB) 50 02:50:01 

50 02:44:17 

5 ResNet101 8,444,808 
(32.21 MB) 

35 01:43:47 

50 03:10:11 

50 03:06:32 

6 ResNet152 8,444,808 

(32.21 MB) 

35 01:26:25 

50 03:02:43 

50 02:57:27 

Table 9 Runtime Information 

Based on Table 10 which displays runtime information from 

various deep learning model architectures, the use of GPU as 

a runtime type helps speed up the model training process so 

that it is more efficient compared to CPU. This can be seen 

from the variation in training time which is influenced by the 

number of trainable parameters and the number of epochs 

used. The smaller the number of trainable parameters, the 

faster the model execution will be due to the lighter 

computational load. Conversely, the larger the number of 

trainable parameters, the longer the model execution time 

will be because it requires higher computational resources to 

process complex parameters. 

 

4.5 Discussion 

The experimental results demonstrate promising accuracy 

across models trained for 35 and 50 epochs using 

augmenteddata, with all models achieving a good fit. This 

indicates that the models effectively learned from both 

training and testing data, ensuring balanced generalization. 

However, an exception was observed in MobileNetV3-Small 

tested at 35 epochs, which exhibited underfitting, suggesting 

the model focused more on the testing data than the training 

data. 

In contrast, when models were trained without data 

augmentation with 50 epochs, only MobileNetV2 and 

MobileNetV3-Large maintained a good fit. MobileNetV3-

Small suffered from underfitting, while ResNet, ResNet101, 

and ResNet152 experienced overfitting, indicating that these 

models memorized the training data but struggled to 

generalize well to unseen data. These findings highlight the 

importance of data augmentation in achieving optimal model 

performance and preventing issues related to underfitting 

and overfitting. These discrepancies can be attributed to the 

limited data variation and the absence of data balancing, 

which contributed to the tendencies toward underfitting and 

overfitting. 

One of the key limitations of this study is the imbalance in 

the number of samples collected for each class, leading to an 

uneven distribution of data. This imbalance poses significant 

challenges, as it can cause models to suffer from underfitting, 

where they fail to capture essential patterns, or overfitting, 

where they become overly reliant on the training data and 

struggle to generalize. Additionally, certain classes may be 

disproportionately represented, increasing the risk of model 

bias.  

 

As a result, some skin conditions might be classified more 

accurately than others, potentially affecting the model’s 

reliability in real-world applications. This bias is particularly 

evident in the autoimmune psoriasis and non-autoimmune 

eczema classes, as these two categories had the highest 
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number of samples before augmentation. Consequently, 

after augmentation, the generated images lacked 

sufficient diversity compared to other classes. This lack 

of variation may cause the model to become more 

proficient at distinguishing these two conditions while 

struggling to  

accurately classify less-represented skin diseases. As a 

result, the model’s decision-making process could be skewed 

toward these dominant classes, potentially reducing its 

overall effectiveness in identifying rarer conditions with 

equal precision. Based on the precision and recall 

information in Table 11, it is evident that there is bias in the 

autoimmune psoriasis and non-autoimmune eczema classes. 

The autoimmune psoriasis class shows a lower precision 

than recall, indicating that the model frequently classifies 

samples as psoriasis, even at the risk of misclassification. 

Conversely, the non-autoimmune eczema class exhibits bias 

in the opposite direction, with a higher precision than recall, 

meaning the model is more selective in classifying samples 

as eczema but may fail to detect some actual cases. This 

imbalance reflects the dominance of certain data during 

training, which can impact the model's ability to generalize 

classification across other categories. 

 
No Class Precision Recall F1-Score 

1 Autoimun 

Dermatomyositis 
0.96 1.00 0.97 

2 Autoimun Lichen 

Planus 
0.95 0.87 0.91 

3 Autoimun 

Psoriasis 
0.73 0.97 0.83 

4 Autoimun 

Vitiligo 
0.99 0.99 0.99 

5 Non Autoimun 

Eczema 
0.91 0.75 0.82 

6 Non Autoimun 

Herepes 
0.94 0.90 0.92 

7 Non Autoimun 

Keratosis 

Seborrheic 

0.96 0.97 0.96 

8 Non Autoimun 

Tinea 
0.87 0.77 0.82 

Table 10 Precision, Recall, and F1-Score of Each Class 

5. Conclusions and Future Works 

This study presents the development of a classification and 

detection model for autoimmune and non-autoimmune skin 

diseases using deep learning. The classification model 

utilizes Convolutional Neural Networks (CNN) with transfer 

learning, including six pretrained architectures: 

MobileNetV2, MobileNetV3Small, MobileNetV3Large, 

ResNet50, ResNet101, and ResNet152. Grad-CAM 

Heatmap is applied to visualize affected areas. Data 

augmentation significantly improved model performance, 

increasing the dataset from 2,764 to 12,000 images, reducing 

overfitting, and enhancing generalization. This is proven by 

the results of the development of this classification model 

producing the highest accuracy by ResNet152 of 92% in 

goodfit conditions. Next by ResNet50 with an accuracy of 

91% in overfit conditions. Followed by ResNet101 with an 

accuracy of 91% in goodfit conditions. Next is 

MobileNetV3Large with an accuracy of 82% in goodfit 

conditions. Continued by MobileNetV2 with an accuracy of 82% 

in goodfit conditions. Lastly, MobileNetV3Small with an 

accuracy of 77% in underfitting conditions. From the training 

results, the ResNet152 model with 50 epoch iterations and using 

data that has been augmented gave the best performance with an 

accuracy of 92%, making it the  

model with the highest accuracy among the six models tested 

with validation results using the Confusion Matrix showing 

a model evaluation value with a precision of 91%, a recall of 

90%, and an F1-Score of 90%. 

Future research can focus on increasing dataset size, balance 

the amount of data for each class to prevent bias,  exploring 

additional pretrained models and optimizers, incorporating 

image segmentation techniques like U-Net and Mask R-

CNN, implement YOLO for real-time skin disease detection, 

leveraging its speed and accuracy to enhance model 

practicality in medical applications, and deploying the model 

in a web-based application for practical use. 
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