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Abstract

Autoimmune diseases arise when the immune system
mistakenly attacks the body's healthy cells, causing a range of
symptoms that can greatly affect a patient's quality of life. In
Indonesia, these conditions present a significant public health
concern. According to research by Ministry of Health Republic
Indonesia in 2024, autoimmune lupus affects approximately
0.5% of the population, impacting over 1.3 million individuals.
This study proposes a classification and detection model
utilizing Convolutional Neural Networks (CNN) with transfer
learning, incorporating MobileNetV2, MobileNetV3Small,
MobileNetV3Large, ResNet50, ResNet101, and ResNet152
architectures. The model's performance is assessed using a
confusion matrix, evaluating precision, recall, and F1-score,
while computational efficiency is analyzed using a GPU T4.
Experimental results demonstrate that ResNet152 achieved the
highest accuracy at 92%. These findings emphasize the crucial
role of selecting an optimal CNN architecture to enhance the
accuracy of autoimmune and non-autoimmune skin disease
classification and detection.
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1. Introduction

Autoimmune diseases occur when the immune system
attacks healthy cells, leading to various symptoms that can
significantly impact quality of life. These conditions often
cause chronic pain, fatigue, and skin rashes, leading to
physical and emotional distress for patients. In Indonesia,
autoimmune diseases pose a major public health challenge.
According to research conducted by the Indonesian Ministry
of Health, thse prevalence of lupus is estimated at 0.5%,
affecting over 1.3 million people, predominantly women
aged 15-45 years [1]. However, patient care remains limited
due to factors such as inadequate healthcare facilities, lack of
physician awareness, restricted medication availability, and
insufficient pharmacies providing necessary drugs [2].
Technological advancements have improved access to health
information, increasing public awareness of autoimmune
diseases. Neurologist Dr. Rocksy Fransisca V Situmeang
Sp.S noted a significant rise in awareness over the past
decade, particularly in urban areas, as people actively seek
information about their symptoms [3]. Despite this progress,
many patients continue to experience prolonged discomfort
due to late diagnosis and inadequate treatment options. Deep
learning presents an innovative approach to improving early
detection of autoimmune diseases, particularly those
manifesting as skin rashes. Convolutional Neural Networks
(CNN) have shown superior performance in analyzing large-
scale medical images, distinguishing between autoimmune
and non-autoimmune conditions. Convolutional Neural
Networks (CNN) surpass traditional algorithms like K-
Nearest Neighbor (KNN) and Support Vector Machine
(SVM) by automatically and efficiently extracting image
features, making them highly effective for image
classification tasks [4]. However, limited awareness of early
detection results in insufficient image data for analysis. To
address this, data augmentation techniques such as rotation,
cropping, and color adjustments enhance dataset diversity,
making models more robust. Data augmentation serves as a
powerful technique to expand the dataset while
simultaneously preventing overfitting, ensuring the model
generalizes well to new data [5]. Additionally, transfer
learning can expedite training and improve model accuracy
by leveraging pre-trained datasets. Transfer learning in
Convolutional Neural Networks (CNN) allows the use of
knowledge from previously trained models to improve
performance on new tasks.

CNN extracts features from images through convolution and
pooling layers to detect local patterns such as edges or
corners. After that, the fully connected and output layers
classify the image based on the extracted features. CNNs are
widely favored in deep learning for their capability to extract
essential features and reduce dimensionality without
compromising the core characteristics of an image, making
them ideal for complex visual recognition tasks [6].
Convolutional Neural Networks (CNNs) have been widely
utilized in medical imaging for disease detection,
demonstrating remarkable success through transfer learning.
From identifying skin lesions and mpox to diagnosing breast
cancer and brain tumors [7], [8], [9], [10], CNN-based
models have significantly enhanced accuracy and efficiency
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in medical diagnostics. By leveraging pre-trained
architectures, these models can efficiently analyze complex
medical images, enabling faster and more reliable disease
classification. Several previous studies have explored the
development of classification models for autoimmune
diseases; however, their scope has been largely limited. Most
of these studies focus on a single autoimmune disease,
particularly psoriasis [11], without extending to a broader
range of autoimmune conditions. Additionally, many
existing models rely on fluoroscopy specimens [12], which,
while effective, may not fully capture the diversity of skin
manifestations across different autoimmune disorders. This
limitation highlights the need for a more comprehensive
approach that can classify multiple autoimmune skin
diseases as well as non-autoimmune skin conditions that
exhibit similar rash-like symptoms, using diverse medical
imaging techniques.

Therefore, in this paper, we propose a deep learning-based
classification model capable of distinguishing between
multiple autoimmune and non-autoimmune skin diseases,
addressing the limitations of prior studies that primarily
focused on a single condition. Unlike previous works that
rely on fluoroscopy specimens, our approach leverages
diverse medical imaging, enhancing its applicability across

various dermatological conditions. By employing
convolutional neural networks (CNNs) such as
MobileNetV2, MobileNetvV3Small, MobileNetV3Large,

ResNet50, ResNet101, ResNetl52 with additional layers,
our model aims to improve diagnostic accuracy and broaden
the scope of automated skin disease classification. The
research involves data collection, annotation, preprocessing,
and augmentation to enhance model robustness.
Furthermore, hyperparameter optimization, including
learning rate, epoch, and optimizer tuning, is applied to
achieve the best model performance in classification and
detection tasks.

This research is expected to contribute as follows:

o Enhancing early detection and diagnosis of skin
diseases, enabling faster and more accurate treatment,
which can significantly improve patient outcomes
and quality of life.

o Supporting  dermatologists  and healthcare
professionals by providing an Al-driven tool that
streamlines the identification of autoimmune and
non-autoimmune  skin  conditions,  reducing
diagnostic errors and improving efficiency.

o Driving advancements in medical image processing
through the development of an optimized deep-
learning approach, paving the way for more
innovative and accessible skin disease detection
technologies in the future.

2. Related Works

Several studies have explored the application of deep
learning models for classifying skin diseases, particularly
autoimmune conditions. One study utilized skin images to
classify six categories, including normal skin and five types
of psoriasis, with an initial dataset of 301 images, which
expanded to 1,838 after augmentation. The study employed
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the VGG-19 model which is known for having Multiple
Convolutional Layers with small kernels, achieving an
accuracy of 84%; however, the model exhibited overfitting,
with a training accuracy of 97% and validation accuracy of
84% [13]. Another study focused on classifying psoriasis and
lichen planus using ResNet-50 which is known for having
Residual Blocks to overcome vanishing gradient, obtaining
an accuracy of 89% with a balanced dataset of 1,836 images
[14]. Further research classified eczema and psoriasis using
an augmented dataset of 6,286 images. It tested pretrained
models, achieving 60% accuracy with AlexNet, 58% with
ResNet, and 82% with VGG-16. Additionally, a custom
model named "Derma Care" was developed, outperforming
the pretrained models with an accuracy of 88% [15]. Another
approach analyzed autoimmune diseases using body cell
images, testing multiple pretrained models. The results
showed 88% accuracy with MobileNet which is known for
having Depthwise Separable Convolution reduces
parameters and computation and Pointwise Convolution
improves feature efficiency, 92% with InceptionV3 which is
known for having Inception Modules with various kernel
sizes in one block, Factorized Convolutions to break up large
convolutions, and Auxiliary Classifiers to speed up
convergence, 95% with DenseNet-121 which is known for
having Dense Blocks and Bottleneck Layers to reduce the
number of parameters, and 78% with VGG-16 [16].
Different research classified six different autoimmune
disease specimens employed AlexNet which is known for
having Convolutional Layers with large kernels to extract
important features without the need for many layers and
achieved an accuracy of 96% [12]. Another research
classified six categories, including normal skin and five
psoriasis types, utilizing MobileNetV2 and VGGNet-19,
achieving 92% and 93% accuracy, respectively.
Furthermore, a custom model named "DWSCNN" was
developed, surpassing pretrained models with an accuracy of
96% [11]. Although previous studies have shown promising
results by utilizing various pretrained models that have
significantly improved accuracy and mAP, most remain
limited to specific classifications and have not addressed the
challenge of distinguishing between autoimmune and non-
autoimmune diseases with similar manifestations.

In comparison, our research not only leverages pretrained
models but also incorporates additional layers and explores
various experimental techniques to optimize model
performance. By systematically adjusting the model
architecture and implementing different training strategies,
we aim to develop a model that achieves good fitting,
attaining high accuracy while minimizing overfitting. This
approach enables a more robust and reliable classification
system, allowing for better differentiation of various skin
conditions within a more complex medical context.

3. Methods

3.1 Dataset

The dataset used in this study was obtained from publicly
accessible sources, including the ISIC 2020 Archive,
DermNet, and Te Whatu Ora Health New Zealand. These
platforms provide a vast collection of high-quality
dermatological images that have been carefully curated for
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research and medical purposes. All images utilized in this
study have been verified by expert dermatologists,
reinforcing their reliability for deep learning-based
classification models. The dataset used consists of 2764
images divided into 8 classes, including autoimmune
diseases such as dermatomyositis with 128 images, lichen
planus with 251 images, psoriasis with 667 images, and
vitiligo with 368 images, as well as non-autoimmune
diseases such as eczema with 512 images, herpes with 222
images, seborrheic keratosis with 208 images, and tinea with
408 images indicates that there is an imbalance in the number
of datasets for each class. An imbalance in the number of
dataset samples across classes can lead the model toward
overfitting, a challenge that will be explored further in
Section 3. Figure 2 illustrates the different skin disease
classes included in this study.
g ] r‘ ‘

Autoimmune Autoimmune Autoimmune Autoimmune
Dermatomyositis  Lichen Planus Psoriasis Vitiligo

ﬁ: ST B
Non Autoimmune Non Autoimmune Non Autoimmune Non Autoimmune

Eczema Herpes Keratosis Tinea
Seboroik

Figure 1 Various skin disease in proposed work

3.2 Processing Data

To overcome problems found in the dataset, such as
variations in image size and imbalance in the number of
images between classes, a preprocessing process is required
which aims to prepare the data to be more consistent and
optimal before being used in model training to improve
model performance.

3.3 Data Augmentation

In machine learning and deep learning, both the quality and
quantity of data play a crucial role in shaping the
effectiveness of the model training process. Augmentation
will increase the amount and diversity of training data by
applying certain transformations to existing data. This
augmentation technique is applied through certain
transformations to existing data, the author performs rotate,
flip left right, flip top bottom, zoom, crop, resize, brightness,
and contrast transformations which aim to improve the
model's generalization ability. In this study, the author uses
the python library Augmentor by increasing the number of
samples by 1500 for each class which will help develop a
stronger model and be able to generalize better.

3.4 Data Distribution

The dataset is systematically divided into training,
validation, and testing sets using a structured data
partitioning method in model development. This approach
ensures that each subset maintains a balanced class
distribution, preserving diversity across the training and
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testing phases. The data is allocated into three categories:
40% for training, 40% for validation, and 20% for testing,
allowing the model to learn effectively while ensuring
reliable performance evaluation.

3.5 Convolutional Neural Network

CNN as a subcategory of Artificial Neural Networks (ANN)
is widely used in computer vision because of its ability to
extract features and filter important information from
images. CNN works by extracting features and filtering
important information from image data through a series of
convolution and pooling layers that aim to detect local
patterns or features, such as edges or corners. Once the
features are extracted, the network will proceed to the
classification section which usually involves several fully
connected layers and an output layer to classify images based
on the features to produce class or category predictions.
Figure 3 represents a common CNN architecture that has
been widely developed.
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Figure 2 CNN Architecture
The CNN architecture consists of two key components:

The feature extraction layer, which captures essential

patterns from input data, and the classification layer, which

interprets these features to make predictions.

Feature Extraction

o Input layer
The input layer stores the pixel values of the given
image along with its color channels (RGB), serving as
the foundation for further processing in the CNN
architecture.

o Convolutional layer
The convolutional layer extracts features from input
data using filters (kernels) that slide across the image,
performing convolution operations. This process
generates feature maps that highlight essential
information such as edges, textures, and shapes. Figure
4 below shows the process of the convolution layer.
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Figure 3 Overview of the convolutional layer process
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Pooling Layer

The pooling layer minimizes the dimensions of the
feature map produced by the convolutional layer by
applying a filtering technique. In max pooling, this
process extracts the highest value from each localized
region of the feature map, retaining the most critical
details, such as edges and key patterns within the
image. Figure 5 illustrates the differences between
various types of pooling.
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Figure 4 Overview of the pooling layer process

Classification
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Flatten Layer

After passing through a series of convolutional and
pooling layers, the feature maps typically retain high-
dimensional structures. The Flatten layer serves to
convert these high-dimensional representations into a
one-dimensional vector, making them suitable for
processing in subsequent fully connected layers. This
layer acts as a bridge between the feature extraction
phase and the decision-making process within the
neural network.

8

8 | 5 5
Flattening

6|9 6

Pooling 9

feature map

Figure 5 Overview of the flatten layer process

Fully Connected Layer

The Fully Connected layer establishes connections
between every neuron in the preceding layer and each
neuron in the subsequent layer, enabling the processing
and classification of extracted features. It comprises
multiple hidden layers integrated with activation
functions such as ReL U, which activates only neurons
with positive values to introduce non-linearity, while
the output layer delivers the final prediction based on
the refined data.

Output Layer
The Output Layer plays a crucial role in producing the
final prediction, typically utilizing a softmax classifier

47



for multi-class classification. Each neuron in this layer
corresponds to a specific class, with the output values
representing the probability of the input being classified into
each respective category.

3.6 Transfer Learning

Transfer learning is a machine learning technique that
leverages a model pre-trained on a vast dataset to tackle a
different yet related task. This technique accelerates training
and enhances model performance by leveraging previously
learned features, which can then be passed to additional
layers for further training. One of the most widely used
datasets for transfer learning is ImageNet, a widely utilized
dataset in transfer learning, consists of millions of labeled
images spanning thousands of categories, making it a
valuable resource for model training. Pre-trained models on
ImageNet can be utilized as feature extractors, where only
the final layers are adjusted for the new task, or through fine-
tuning, which allows for the modification of weights in some
or all layers to improve accuracy on a smaller, domain-
specific dataset. As shown in Figure 7.
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Figure 6 Transfer Learning

In this research there are 7 pretrained model architectures
used:

1) MobileNetV2

MobileNetV2 introducing inverted residual blocks with
linear bottlenecks, which helps maintain low computational
costs while preserving representational power. Unlike
traditional CNNs, MobileNetV2 employs depthwise
separable convolutions to minimize parameter count and
computational demands, enhancing efficiency without
compromising performance. The network consists of 17
layers of inverted residual blocks, where each block features
depthwise convolutions followed by 1x1 pointwise
convolutions. This structure enhances feature reuse and
gradient flow.

2)  MobileNetV3Small

MobileNetV3 Small is an optimized version of MobileNetV3
that integrates squeeze-and-excitation (SE) modules for
better channel-wise attention and uses hard-swish (h-swish)
activation functions to improving non-linearity while
maintaining efficiency. The architecture includes bottleneck
residual blocks, but compared to MobileNetV2, it reduces the
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number of layers and parameters, making it more suitable for
real-time applications with limited processing power.

3) MobileNetV3Large

MobileNetV3 Large is a more powerful version of
MobileNetV3 that retains the squeeze-and-excitation (SE)
modules, hard-swish activations, and depthwise separable
convolutions from MobileNetV3 Small but incorporates
more bottleneck layers for improved feature extraction. The
architecture consists of larger kernel sizes and more
activation layers, allowing it to process complex patterns
while still being optimized for mobile applications.

4) ResNet50

ResNet50 is a deep convolutional neural network with 50
layers,  comprising  convolutional layers,  batch
normalization, ReL U activations, and fully connected layers.
What makes ResNet unique is its residual connections, or
skip connections, which enable the model to bypass specific
layers and transfer information directly. This mechanism
helps mitigate the vanishing gradient problem in deep
networks, allowing for more efficient training. ResNet50 is
structured into four stages of residual blocks, each containing
three bottleneck layers that optimize parameter efficiency
while preserving powerful feature extraction capabilities.

5) ResNet101

ResNet101 extends the architecture of ResNet50 by
increasing its depth to 101 layers, consisting of 33 bottleneck
residual blocks. The deeper architecture allows the model to
learn more complex patterns and hierarchical features from
images, improving its performance on high-resolution and
large-scale datasets.

6) ResNetl52

ResNet152 is an even deeper variant of the ResNet family,
featuring 152 layers with 50 bottleneck residual blocks,
making it one of the deepest networks available for feature
extraction. Its extreme depth enhances the model’s ability to
learn highly abstract representations, making it ideal for
highly complex tasks such as satellite image analysis,
autonomous driving, and industrial defect detection.

3.7 System Design

Figure 8 shows the framework used to implement this research.

CLASSIFICATION
PROPOSED METHODS

ARCHITECTURES

MobileNetV2 ]

MobileNetV3ismall ]
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(_uuj(_;uu

(:_ End _7)

Maodel
Tectiveness

Figure 7 Framework
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Based on the framework in the figure 7, this study employs
two primary methods: classification and object detection,
aiming to evaluate both model effectiveness and
computational efficiency. The classification method begins
with dataset collection, followed by image preprocessing to
enhance data quality and data augmentation to improve
model generalization. The processed dataset is then split into
training, validation, and test sets. The model development
utilizes various CNN architectures, including MobileNetV2,
MobileNetV3Small, MobileNetV3Large, ResNet50,
ResNet101, and ResNet152, integrated with additional layers
such as Flatten, Fully Connected, Dropout, and Output
layers. Grad-CAM is employed to provide interpretability by
visualizing model decisions.

The effectiveness of the models is evaluated using metrics
such as accuracy, precision, recall, and F1-score, while
computational efficiency is measured based on runtime
performance on GPU (T4). This approach ensures optimal
performance in both prediction accuracy and resource
utilization.

1. Proposed Classification Model Architecture

This study focuses on developing a classification model for
distinguishing between autoimmune and non-autoimmune
skin diseases using image-based analysis. The model utilizes
a pre-trained CNN architecture as the input layer to leverage
transfer learning, enhancing feature extraction and
accelerating training. To refine the classification process,
eight additional layers are incorporated, including Flatten,
Dropout, BatchNormalization, Fully Connected layers with
Dense + ReLU activation, and an Output layer with a
Softmax classifier. These layers improve the model’s
robustness, reduce overfitting, and optimize classification
accuracy. Figure 8 provides an overview of the model
architecture used in this study.

Input Layer = Pretrained Model
(224x224x3, ‘imagenet’, max pooling)

I

[ Flatten Layer ]

{ Dropout Layer (0.25) ]

[ BatchNormalization Layer ]

[ Fully Connected Layer (Dense 256 neuron + RelLU) ]
[ Dropout Layer (0.25) ]
[ Fully Connected Layer (Dense 128 neuron + RelLU) ]

]

( Dropout Layer (0.25) ]

Output Layer
(Dense 8 neuron & Softmax activation)

Figure 8 Classification Model Development

o Input layer: The model starts with a pre-trained CNN
architecture such as MobileNetV2,
MobileNetV3Small, MobileNetV3Large, ResNet50,
ResNet101, and ResNet152 trained on ImageNet,
designed to process input images with dimensions
224x224 pixels, where 224x224 represents the spatial
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resolution and 3 channels correspond to the RGB color
space. This layer leverages transfer learning to extract
meaningful features from skin disease images
efficiently, utilizing max pooling for spatial
downsampling.

o Flatten: Transforms the multi-dimensional feature
maps from the pre-trained model into a one-
dimensional vector, ensuring compatibility with the
fully connected layers for further processing.

o Dropout Layer (0.25): Applies a 25% dropout rate to
minimize overfitting by randomly disabling neurons
during training, enhancing the model’s ability to
generalize effectively.

o BatchNormalization Layer: Normalizes activations
across the batch, stabilizing training by reducing
internal covariate shifts and improving convergence
speed.

o Fully Connected Layer (Dense 256 + ReLU): A
dense layer with 256 neurons and RelLU activation,
responsible for learning high-level representations
from the extracted features.

o Dropout Layer (0.25): Another dropout layer with a
25% rate, maintaining model regularization to enhance
robustness.

o Fully Connected Layer (Dense 128 + ReLU):
Incorporates a dense layer with 128 neurons and a

ReLU activation function, optimizing feature
representation and improving classification
performance.

o Dropout Layer (0.25): An additional dropout layer
with 25% rate, reducing dependency on specific
neurons and improving model generalization.

o Output Layer (Dense 8 + Softmax): The final fully
connected layer with 8 neurons corresponds to the
number of disease classes, utilizing a Softmax
activation function to output probability distributions
for classification.

3.8 Training Model

To avoid overfitting in improving models, techniques such
as early stopping are used in training deep learning models.
This technique prevents the model from being overtrained by
stopping the training when the data performance no longer
improves. In addition, model checkpoints automatically
save the best model during training, so that the best
performing model can be used without retraining. The
implementation of callback accuracy targets is also used to
manually stop training when the model has reached the set
accuracy target.

3.9 Evaluation of Model Effectiveness

The confusion matrix is a crucial evaluation tool for
assessing the performance of a classification model. It
presents a matrix comparison between predicted and actual
values from the test data, offering insights into how
effectively the model classifies each class. By utilizing a
confusion matrix, the number of correct and incorrect
predictions for each category is systematically displayed,
allowing for the calculation of key evaluation metrics such
as accuracy, precision, recall, and F1-score [17]. his matrix
comprises four primary components that illustrate the
relationship between model predictions and actual
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classifications: True Positive (TP), representing correctly
predicted positive instances; True Negative (TN), indicating
correctly identified negative instances; False Positive (FP),
where negative instances are misclassified as positive; and
False Negative (FN), where positive instances are mistakenly
labeled as negative. A visual representation of the confusion
matrix is provided in Figure 9.

TP Dermalomyosits

Confusion Matrix

N H ) ’ -

Figure 9 Confusion Matrix

This research assesses system performance based on F1
score, accuracy, recall, and precision. The calculation results
of these performance measurements are shown in (1), (2),
(3), and (4).

2 TP+TN )
CCWracy = TP Y TN+ FP + FN

- TP @)

Precision = m
TP 3)

R = —

ecall = T TFN
Precision x Recall 4

F1 — Score =2x

Precision + Recall

3.10Evaluation of Model Efficiency

Each model development in this study uses the T4 GPU,
which is known to be efficient in execution time for deep
learning training and inference. With its power-efficient and
high-performance architecture, the T4 GPU enables fast and
optimal data processing. An overview use of T4 GPU as
runtime type is shown in Figure 10.
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Figure 10 GPU T4
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This study utilizes the pretrained architectures
MobileNetV2, MobileNetvV3Small, MobileNetV3Large,
ResNet50, ResNet101, and ResNet152, which have different
layer depths. These differences affect the complexity,
number of output parameters, and execution time efficiency
during training and inference.

4. Results and Discussion

The difference in data quantity between Table 1 and Table
2 highlights the impact of data augmentation in this study.
Table 1 presents the original dataset before augmentation,
which consists of a limited number of images, potentially
restricting the model’s ability to generalize across diverse
cases. In contrast, Table 2 showcases the dataset after
augmentation, where techniques such as rotation, flipping,
scaling, and color adjustments have been applied to
artificially expand the dataset. This augmentation process
enhances model robustness by increasing variation within
the training data, reducing overfitting, and improving overall
classification and detection performance.

No. Directory Percent Amount Data
1 Train 40% 1337
2 Validation 40% 891
3 Test 20% 558
Total 2786

Table 1 Unaugmented Data Distribution

No. Directory Percent Amount Data
1 Train 40% 5760
2 Validation 40% 3840
3 Test 20% 2400
Total 12000

Table 2 Augmented Data Distribution

4.1 Experiment A Result (Augmented Data)

Experiment A utilized augmented data during both training
and testing phases, ensuring the model learns from a more
diverse dataset, thereby enhancing its generalization
capability and robustness. In this study, hyperparameter
tuning was conducted to optimize model performance during
training. Key parameters such as batch size, learning rate,
number of epochs, network layers, and optimizer type, as
detailed in Table 3.

No Hyperparameter

1 Batch Size 32

2 Layers 9

3 Epoch 35 and 50
4 Optimizer Adamax
5 Learning Rate 0.0001

Table 3 Experiment A Result

The model is trained using various CNN architectures,
including MobileNetV2, MobileNetV3Small,
MobileNetV3Large, ResNet50, ResNet101, and ResNet152,
with modifications applied to the structured layers on Figure
8. The training process utilizes the Adamax optimizer and is
conducted with different epoch settings, specifically 35 and
50. A summary of the model’s performance metrics,
including accuracy and loss across these epoch variations, is
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Loss

presented in Table 4.

Epoch Avrchitecture Val_ Acc Loss Val_
Acc Loss
MobileNetvV2 0.7904 0.7909  0.5618  0.5520
MobileNetv3 0.7305 0.6728  0.8556  0.7297
Small
35 MobileNetv3 0.8039 0.7610  0.6417  0.5300
Large
ResNet50 0.9057 0.9501  0.1482  0.3045
ResNet101 0.8922  0.9259 0.2091  0.3207
ResNet152 0.8982  0.9223  0.2146  0.3159
MobileNetvV2 08203 0.8368  0.4418  0.4864
MobileNetv3 0.7766  0.7324  0.6980  0.6124
Small
50 MobileNetvV3 0.8299 0.8136  0.4865  0.4559
Large
ResNet50 0.9198 0.9699  0.0935  0.3010
ResNet101 09167 0.9593 0.1189  0.2898
ResNet152 0.9203 0.9637 0.1049  0.2828

Table 4 Training Result of Experiment A

The experimental results indicate that the ResNet152 model
with 50 epochs delivers the best performance, as evidenced
by the minimal gap between training and validation loss.
This outcome occurs due to a significant reduction in both
training and validation loss values, as illustrated in Figure
11.

Training and Validation Accuracy

—— Training Accuracy
validation Accuracy

——————
e
—

—

o 10 20 30 40 50
Epoch
Training and Validation Loss

—— Training Loss
validation Loss

o 10 20 30 a0 50
Epoch

Figure 11 Accuracy and Loss Graphics of ResNet152 Model
(50 Epoch)

At epoch 35, the MobileNetV2, MobileNetV3Large,
ResNet50, ResNet101, and ResNet152 models exhibit good
fitting conditions, maintaining a balance between training
and validation performance. However, the
MobileNetV3Small model shows signs of underfitting,
indicating that it struggles to capture essential patterns from
the data. By epoch 50, MobileNetVV2, MobileNetV3Small,
MobileNetV3Large, ResNet50 ResNet101, and ResNet152
continue to demonstrate good fitting, suggesting stable and
well-generalized learning.
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Using confusion matrices like accuracy, precision, recall, or
F1-score, the model's performance is assessed at the
evaluation stage following training. The results of the model
evaluation experiments are shown in Table 5.

Epoch Architecture Accuracy Precision  Recall F1-
Score
MobileNetV2 0.7904 0.80 0.78 0.78
MobileNetV3 0.7305 0.72 0.72 0.71
Small
35 “MobileNetv3 08039 078 076 075
Large
ResNet50 0.9057 0.90 0.90 0.89
ResNet101 0.8922 0.90 0.89 0.89
ResNet152 0.8982 0.89 0.88 0.88
MobileNetV2 0.8203 0.83 0.82 0.82
MobileNetV3 0.7766 0.75 0.75 0.75
Small
50 “MobileNetva 08299 081 079 0.9
Large
ResNet50 0.9198 0.91 0.90 0.91
ResNet101 0.9167 0.91 0.90 0.91
ResNet152 0.9203 0.91 0.90 0.90

Table 5 Evaluation Result of Experiment A

In the first experiment with 35 epochs, the ResNet50
architecture showed 90% accuracy, with precision, recall,
and F1-score values consistent at 0.90 for macro average and
weighted average. This shows that ResNet50 is able to
recognise all classes in the early stages of training. ResNet152
has an accuracy of 89%, slightly lower than ResNet50. In
addition, ResNet50 shows stable performance with accuracy,
recall, and F1 scores of 0.89 on weighted and macro
averages. Then the ResNet101 architecture showed 89%
accuracy, with precision, recall, and F1-score values
consistent at 0.89 for macro average and weighted average.
Then the MobileNetV3Large architecture showed 80%
accuracy, with precision, recall, and F1-score values
consistent at 0.78 for macro average and weighted average.
Then the MobileNetV2 architecture showed 79% accuracy,
with precision, recall, and F1-score values consistent at 0.80
for macro average and weighted average. Lastly,
MobileNetV3Small has very poor performance showed 73%
accuracy, with precision, recall, and F1-score values
consistent at 0.72 for macro average and weighted average.
This performance indicates that MobileNetVV3Small has
difficulty identifying data patterns in the early stages of
training.

In the second experiment with 50 epochs, the ResNet152
architecture showed 92% accuracy, with precision, recall,
and F1-score values consistent at 0.91 for macro average and
weighted average. This shows that ResNet152 is able to
recognise all classes in the early stages of training. ResNet50
has an accuracy of 91%, slightly lower than ResNet152. In
addition, ResNet50 shows stable performance with accuracy,
recall, and F1 scores of 0.91 on weighted and macro
averages. The ResNet101 architecture achieved an accuracy
of 91%, with precision, recall, and F1-score values
consistently recorded at 0.91 for both the macro and
weighted averages. Meanwhile, the MobileNetV3Large
model demonstrated an accuracy of 82%, with its precision,
recall, and F1-score maintaining a steady value of 0.81 for
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both macro and weighted averages.
MobileNetV2

Similarly,

attained an accuracy of 82%, with precision, recall, and F1-
score values consistently at 0.82 for both evaluation metrics.
In contrast, MobileNetV3Small exhibited the weakest
performance, reaching only 77% accuracy, with precision,
recall, and F1-score values remaining at 0.75 for macro and
weighted averages. This performance indicates that
MobileNetV3Small has difficulty identifying data patterns in
the early stages of training.

4.2 Experiment B Result (Non-Augmented Data)
Experiment B was conducted using non-augmented data for
both training and testing, allowing an evaluation of the
model’s performance on raw, unaltered datasets. This
approach helps assess how well the model generalizes
without the benefits of increased data diversity. To ensure
optimal performance during training, hyperparameter tuning
was applied, adjusting key parameters such as batch size,
learning rate, number of epochs, network layers, and
optimizer type, as presented in Table 6.

No Hyperparameter
1 Batch Size 32
2 Layers 9
3 Epoch 50
4 Optimizer Adamax
5 Learning Rate 0.0001

Table 6 Hyperparameter Experiment B

The model is trained using various CNN architectures,
including MobileNetV2, MobileNetV3Small,
MobileNetV3Large, ResNet50, ResNet101, and ResNet152,
with modifications applied to the structured layers on Figure
9. The training process utilizes the Adamax optimizer and is
conducted with different epoch 50. A summary of the
model’s performance metrics, including accuracy and loss
across these epoch variations, is presented in Table 7.
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Figure 12 Accuracy and Loss Graphics of ResNet50 Model (Raw
Data)

At epoch 50, the MobileNetVV3Small model demonstrates
signs of underfitting, struggling to capture complex patterns
from the data, leading to suboptimal performance on both
training and validation sets. In contrast, the MobileNetV2
and MobileNetV3Large models achieve a well-balanced
state of good fitting, maintaining stable performance across
training and validation. However, MobileNetV3Small
continues to exhibit underfitting, indicating its limited
learning capacity. Meanwhile, the ResNet50, ResNet101,
and ResNet152 models show evident signs of overfitting,
marked by a significant disparity between training and
validation accuracy and loss values. This suggests that
although these models excel on training data, their ability to
generalize to new, unseen data is significantly reduced.

Using confusion matrices like accuracy, precision, recall, or
F1l-score, the model's performance is assessed at the
evaluation stage following training. The results of the model
evaluation experiments are shown in Table 8.

Epoch Architecture Val_ Acc Loss Val_
Acc Loss
MobileNetvv2 0.7531  0.8064 0.4978  0.6106
MobileNetvV3 0.6889  0.6167 1.0377  0.8906
Small
MobileNetvV3 0.7568  0.7055 0.8081  0.7079
50 Large
ResNet50 0.8111 0.9379 0.2183  0.5335
ResNet101 0.8077 0.8987 03142 0.5524
ResNet152 0.7924  0.8912 0.2975 0.6080

Table 7 Training Result of Experiment B

The experimental results indicate that the ResNet50 model
with 50 epochs delivers the best accuracy but not the best
performance, as evidenced by the substansial gap between
training and validation loss. This significant discrepancy
suggests that while the model performs exceptionally well on
the training data, its generalization to unseen validation data
is limited, as shown in Figure 12.

Epoch Architecture Accuracy Precision  Recall F1-

Score
MobileNetV2 0.8203 0.73 0.71 0.72
MobileNetV3 0.7766 0.67 0.55 0.54

Small
MobileNetV3 0.8299 0.71 0.64 0.66

50 Large
ResNet50 0.9198 0.80 0.80 0.80
ResNet101 0.9167 0.80 0.79 0.79
ResNet152 0.9203 0.80 0.77 0.78

Table 8 Evaluation Result of Experiment B

In the first experiment with 50 epochs, the ResNet50
architecture achieved an accuracy of 81%, with precision,
recall, and F1-score values consistently at 0.80 for both
macro and weighted averages. This indicates that ResNet50
can effectively recognize all classes in the early stages of
training. ResNet101 followed closely with an accuracy of
80%, slightly lower than ResNet50, yet maintaining stable
performance across all evaluation metrics. Meanwhile,
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ResNet152 recorded an accuracy of 79%, with
precision, recall, and F1-score values at 0.78 for both
macro and weighted averages. Among the MobileNet
models,

MobileNetV3Large reached an accuracy of 75%, with
precision, recall, and Fl1-score values at 0.71, while
MobileNetV2 demonstrated a similar accuracy of 75%, but
with slightly better precision, recall, and F1-score values at
0.74. On the other hand, MobileNetVV3Small exhibited the
weakest performance, achieving only 68% accuracy, with all
evaluation metrics consistently at 0.67. This result suggests
that MobileNetV3Small struggles to identify meaningful
data patterns in the early stages of training, leading to
suboptimal performance.

4.3 Prediction Result

The prediction results of this classification model are
visualized in Figure 13, which is represented by the help of
the GradCam Heatmap tool for visualizing disease areas,
how the model marks areas detected as skin diseases with a
heatmap.

‘!g
F -
[Scad

5

Figure 13 Predisction Result of Classification
Model using GradCam Heatmap

4.4 Model Execution Results (Runtime)

In  this study, MobileNetV2, MobileNetV3Small,
MobileNetV3Large, ResNet50, ResNet101, and ResNet152
are used as pretrained model architectures, where each
architecture has a different layer depth that directly affects
the complexity and number of output parameters produced.
These differences contribute to variations in performance
and efficiency of model execution time during the training
and inference process. Runtime information during model
development can be seen in the following Table 10.

No Avrsitektur Trainable Epoch Runtime
Parameters

1 MobileNetV2 1,416,904 35 01:18:07

(5.41 MB) 50 02:34:51

50 02:32:26

2 | MobileNetvV3Small | 533,336 (2.03 35 01:09:34

MB) 50 02:20:17

50 02:15:35

3 | MobileNetV3Large 1,234,744 35 01:13:57

(4.71 MB) 50 02:40:29

50 02:36:48

4 ResNet50 8,444,808 35 01:22:51
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(3221 MB) 50 02:50:01

50 02:44:17

5 ResNet101 8,444,808 35 01:43:47
(32.21 MB) 50 03:10:11

50 03:06:32

6 ResNet152 8,444,808 35 01:26:25
(32.21 MB) 50 03:02:43

50 02:57:27

Table 9 Runtime Information

Based on Table 10 which displays runtime information from
various deep learning model architectures, the use of GPU as
a runtime type helps speed up the model training process so
that it is more efficient compared to CPU. This can be seen
from the variation in training time which is influenced by the
number of trainable parameters and the number of epochs
used. The smaller the number of trainable parameters, the
faster the model execution will be due to the lighter
computational load. Conversely, the larger the number of
trainable parameters, the longer the model execution time
will be because it requires higher computational resources to
process complex parameters.

4.5 Discussion

The experimental results demonstrate promising accuracy
across models trained for 35 and 50 epochs using
augmenteddata, with all models achieving a good fit. This
indicates that the models effectively learned from both
training and testing data, ensuring balanced generalization.
However, an exception was observed in MobileNetV3-Small
tested at 35 epochs, which exhibited underfitting, suggesting
the model focused more on the testing data than the training
data.

In contrast, when models were trained without data
augmentation with 50 epochs, only MobileNetV2 and
MobileNetV3-Large maintained a good fit. MobileNetV3-
Small suffered from underfitting, while ResNet, ResNet101,
and ResNet152 experienced overfitting, indicating that these
models memorized the training data but struggled to
generalize well to unseen data. These findings highlight the
importance of data augmentation in achieving optimal model
performance and preventing issues related to underfitting
and overfitting. These discrepancies can be attributed to the
limited data variation and the absence of data balancing,
which contributed to the tendencies toward underfitting and
overfitting.

One of the key limitations of this study is the imbalance in
the number of samples collected for each class, leading to an
uneven distribution of data. This imbalance poses significant
challenges, as it can cause models to suffer from underfitting,
where they fail to capture essential patterns, or overfitting,
where they become overly reliant on the training data and
struggle to generalize. Additionally, certain classes may be
disproportionately represented, increasing the risk of model
bias.

As a result, some skin conditions might be classified more
accurately than others, potentially affecting the model’s
reliability in real-world applications. This bias is particularly
evident in the autoimmune psoriasis and non-autoimmune
eczema classes, as these two categories had the highest
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number of samples before augmentation. Consequently,
after augmentation, the generated images lacked
sufficient diversity compared to other classes. This lack

of variation may cause the model to become more
proficient at distinguishing these two conditions while
struggling to

accurately classify less-represented skin diseases. As a
result, the model’s decision-making process could be skewed
toward these dominant classes, potentially reducing its
overall effectiveness in identifying rarer conditions with
equal precision. Based on the precision and recall
information in Table 11, it is evident that there is bias in the
autoimmune psoriasis and non-autoimmune eczema classes.
The autoimmune psoriasis class shows a lower precision
than recall, indicating that the model frequently classifies
samples as psoriasis, even at the risk of misclassification.
Conversely, the non-autoimmune eczema class exhibits bias
in the opposite direction, with a higher precision than recall,
meaning the model is more selective in classifying samples
as eczema but may fail to detect some actual cases. This
imbalance reflects the dominance of certain data during
training, which can impact the model's ability to generalize
classification across other categories.

No Class Precision Recall F1-Score
1 Autoimun 0.96 1.00 0.97
Dermatomyositis
2 Autoimun Lichen 0.95 0.87 0.91
Planus
3 Autoimun 0.73 0.97 0.83
Psoriasis
4 Autoimun 0.99 0.99 0.99
Vitiligo
5 Non Autoimun 0.91 0.75 0.82
Eczema
6 Non Autoimun 0.94 0.90 0.92
Herepes
7 Non Autoimun 0.96 0.97 0.96
Keratosis
Seborrheic
8 Non Autoimun 0.87 0.77 0.82
Tinea

Table 10 Precision, Recall, and F1-Score of Each Class
5. Conclusions and Future Works

This study presents the development of a classification and
detection model for autoimmune and non-autoimmune skin
diseases using deep learning. The classification model
utilizes Convolutional Neural Networks (CNN) with transfer

learning,  including  six  pretrained  architectures:
MobileNetV2, MobileNetVV3Small, MobileNetV3Large,
ResNet50, ResNetl01, and ResNetl52. Grad-CAM

Heatmap is applied to visualize affected areas. Data
augmentation significantly improved model performance,
increasing the dataset from 2,764 to 12,000 images, reducing
overfitting, and enhancing generalization. This is proven by
the results of the development of this classification model
producing the highest accuracy by ResNet152 of 92% in
goodfit conditions. Next by ResNet50 with an accuracy of
91% in overfit conditions. Followed by ResNet101 with an
accuracy of 91% in goodfit conditions. Next is
MobileNetV3Large with an accuracy of 82% in goodfit
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conditions. Continued by MobileNetV2 with an accuracy of 82%

in goodfit conditions. Lastly,

MobileNetV3Small with an

accuracy of 77% in underfitting conditions. From the training
results, the ResNet152 model with 50 epoch iterations and using
data that has been augmented gave the best performance with an

[

accuracy of 92%, making it the

model with the highest accuracy among the six models tested
with validation results using the Confusion Matrix showing
a model evaluation value with a precision of 91%, a recall of
90%, and an F1-Score of 90%.

Future research can focus on increasing dataset size, balance
the amount of data for each class to prevent bias, exploring
additional pretrained models and optimizers, incorporating
image segmentation techniques like U-Net and Mask R-
CNN, implement YOLO for real-time skin disease detection,
leveraging its speed and accuracy to enhance model
practicality in medical applications, and deploying the model
in a web-based application for practical use.
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